# Mini RSA (70)

RSA with low exponent

## Problem

What happens if you have a small exponent? There is a twist though, we padded the plaintext so that (M ** e) is just barely larger than N. Let's decrypt this: ciphertext

## Solution

$N$
to
$c$
, until
$c$
can be expressed as an
$e\text{-th}$
power.

### Proof

$c=m^e \pmod n$
Case 1:
$m^e
. Then
$m=\sqrt[e]{c}$
Case 2:
$m^e\ge n$
. Then
\begin{align} c &= m^e - kn \\ m &= \sqrt[e]{c+kn} \\ \end{align}
for some
$k \in \mathbb{Z^+}$
. This sort of attack works because in our case,
$e$
is small.
The algorithm adds N to c until c becomes a valid cube. At this point, we are able to obtain the plaintext message, i.e. the cube root.
import gmpy
from libnum import *
N = 1615765684321463054078226051959887884233678317734892901740763321135213636796075462401950274602405095138589898087428337758445013281488966866073355710771864671726991918706558071231266976427184673800225254531695928541272546385146495736420261815693810544589811104967829354461491178200126099661909654163542661541699404839644035177445092988952614918424317082380174383819025585076206641993479326576180793544321194357018916215113009742654408597083724508169216182008449693917227497813165444372201517541788989925461711067825681947947471001390843774746442699739386923285801022685451221261010798837646928092277556198145662924691803032880040492762442561497760689933601781401617086600593482127465655390841361154025890679757514060456103104199255917164678161972735858939464790960448345988941481499050248673128656508055285037090026439683847266536283160142071643015434813473463469733112182328678706702116054036618277506997666534567846763938692335069955755244438415377933440029498378955355877502743215305768814857864433151287
orig = 1220012318588871886132524757898884422174534558055593713309088304910273991073554732659977133980685370899257850121970812405700793710546674062154237544840177616746805668666317481140872605653768484867292138139949076102907399831998827567645230986345455915692863094364797526497302082734955903755050638155202890599808154521995312832362835648711819155169679435239286935784452613518014043549023137530689967601174246864606495200453313556091158637122956278811935858649498244722557014003601909465057421728834883411992999408157828996722087360414577252630186866387785481057649036414986099181831292644783916873710123009473008639825720434282893177856511819939659625989092206115515005188455003918918879483234969164887705505900695379846159901322053253156096586139847768297521166448931631916220211254417971683366167719596219422776768895460908015773369743067718890024592505393221967098308653507944367482969331133726958321767736855857529350486000867434567743580745186277999637935034821461543527421831665171525793988229518569050
c = orig
while True:
m = gmpy.root(c, 3)[0]
if pow(m, 3, N) == orig:
print("pwned", n2s(int(m)))
break
c += N